Geospatial for Water Resources Assessment and Mangement

Dr.V.Venkateshwar Rao Group Head, Water Resources, NRSC ISRO, Dept. Of Space ,Govt. of India

IGF,10-12, February 2015, Hyderabad

Information from Satellite Observations

* Conventional ground based observations shown in italics

Hydrologic Modeling for Water Resources Assessment and Flood Management

- 1. Basin Level Water Resources Assessment Using Space Inputs (annual timestep)
- Joint pilot study with CWC in Godavari, Brahmini & Baitarani River Basins
- Up scaled all 20 river basins : CWC will execute with the support of NRSC
- Snow melt Runoff forecasting in 5 Himalayan river basins (Seasonal, fortnightly)
 -User : CWC
- Seasonal forecast modeling (April to June)
- Short term forecast modeling (16 daily)
- 3. Grid based Water Balance Computations (daily time-step) Godavari, Mahanadi, Brahmani-Baitarani,etc Basins @ 3 minx3min- extended to all basins soon
- National level @ 9minx9min
- 4. Real-time flood forecasting in the Godavari Basin (sub-daily time-step)
- A real-time application in collaboration with CWC and IMD
- FF Modeling in 6 Flood prone areas
- 5. Glacier Lake hazard assessment (event based study)
- South Lonak glacier Lake, Sikkim ,Lake in Nepal, Kedarnath etc..

Basin-wise Mean Annual Water Resources Assessment using Space Based Geo-Spatial Data Implementation at National Level

- Currently used water resources potential estimates are old; Changes in land use /land cover, irrigation development, GW exploitation and varying rainfall/climate necessitated reassessment
- NRSC and CWC jointly carried out pilot studies (Godavari and Brahmani-Baitarani river basins)
- Precipitation based Water balance approach; Thornthwaite-Mather Water Balance Model; Monthly time step
- Land Use/Land Cover, Soil, irrigation command, Climate are integrated at Hydrological Response Unit level to compute AET, Soil Moisture and runoff from precipitation
- Calibration of model runoff with field measured river discharge
- Water Resources availability is computed with model computed runoff and upstream abstractions (irrigation water use, evaporation losses, domestic, industrial and live stock consumptive use)
- Upscaled to all basins: CWC &NRSC -12FYP

Pilot Study Results

Water Resources Management Snowmelt Runoff Modelling

- Estimation of runoff due to snowmelt during summer months using Remote sensing derived inputs adopting energy balance approach.
- Remote sensing is the only tool to capture snow cover dynamics for the inaccessible Himalayan region.
 Snow cover being highly dynamic, the spatial extent can be captured in cost effective manner on daily basis.
- Seasonal and short-term forecasts are provided.
- To plan the water allocations and sharing for drinking water, irrigation and hydel power generation during the summer period
- Central Water Commission, Ministry of Water Resources

- Chenab, Beas, Sutlej, Yamuna and Ganga basins
- IRS-P6 AWiFS
 and Terra Modis

Snowmelt Runoff Forecasting in Himalayan basins using RS inputs

Using Energy Budget approach

Input data used	Source
Snow Cover Area	AWiFS / MODIS satellite data
Glacier Cover Area	AWiFS satellite data
Land Surface Temperature	MODIS satellite data (8-Day LST product MOD11A2)
Incoming Solar Radiation	f(elevation,slope,aspect,Julian day, lat., long.)
Net Longwave Radiation	<pre>f(LST) - (MODIS satellite data, 8-Day LST product MOD11A2)</pre>
Snow Albedo	MODIS satellite data (Daily SCA Product MOD10A1)
Land Cover	AWiFS satellite data
Snow persistence Index	MODIS satellite data (8-Day SCA Product MOD10A2)
DEM	Cartosat / SRTM data
Discharge, Rainfall data	CWC- Field data

Chenab Beas Sutlei Rhunta Bhak Bhagirathi Yamuna Uttarkashi Alaknanda Hatnikund Rudraprayag Insolation during 1-8 May 2013 Land Cover 65843 watt-hour Deciduous forest Evergreen forest Other land Water bodies 529 watt-hour

Seasonal Snowmelt Forecast issued for the period April-May-

Basin	Seasonal Forecast Apr - Jun 2013 (MCM)
Alaknanda	2,320
Bhagirathi	1,040
Beas	800
Chenab	6,520
Sutlej	3,700
Yamuna	960

Land Surface Hydrological Modelling - Mahanadi River Basin

- **4** Variable Infiltration Capacity Hydrological Model
 - Open source; Grid-wise water and energy balance
 - Sub-grid heterogeneity of Land cover
 - Soil depth-wise hydrological response
 - Vegetation phenological changes
 - Daily / sub-daily time step
- 4 9 min (~16.5km), 3 min (~ 5.5km) Grid-wise data base
- 🖶 🛛 Geo-spatial data
 - Terrain Topographic, Soil (NBSSLUP), LULC (NRC-250k), LAI, Albedo, Irrigation
 - Meteorological Rainfall, Temperature, ... (CDAS/CPC)
 - Hydrological River discharge, Reservoir Storage/Releases, GW levels, ...
- **Calibration with river discharge data (India-WRIS)**

Land Use / Land Cover Parameterization

Calibration with River Discharge

1976 1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006 2013(June-Oct)

National Remote Sensing Centre

हसरो isra

Near Real Time Hydrological Modelling - Products & Services Experimental Hydrological Fluxes using Land Surface Model Description of terrestrial hydrological flux components in terms of their geographical distribution and chronological variation is useful for water resources management drought/flood assessment and climate related research. Earth Observation (EO) data from multitude platforms are providing wide ranging datasets that are useful for creation o spatially distributed parameters appropriate for hydrological budgeting and modeling. Macro-scale, process based hydrological (Variable Infiltration Capacity - VIC) model has been adopted for modelling water balance components at uniform grid level. VIC, a semi-distributed & physically based hydrological model, solves both the water balance and the energy balance (Liang X., 1994). Model computes evapotranspiration, surface runoff, soil moisture, base flow and energy fluxes at the predefined grid resolution (few km to hundred km) Grid Details and Features 9min (~16.5km) Grid level modelling frame work (water balance mode) has been setup for the entire county using Geo-spatial data sets and historic meteorological data. Current season daily meteorological data are used to compute daily hydrological fluxes at 9min grid level. The orderly description of hydrological fluxes are useful for quantifying spatial and temporal variation in basin/sub-basin scale water resources, periodical water budgeting and form vital inputs for studies on topics ranging from water resources management to land-atmosphere interactions including climate change. Daily Products | Interactive Viewer and Trend Analysis | Time Series Animat **Daily Products** All Products can be visualized based on the Date selected Select Date : July 23, 2014 Surface Runo About Product Experimental model computed Runoff, Soil Moisture and Evapotranspiration (Version 1.0) are derived through water balance computations using VIC-3L hydrological model considering geo-spatial data and current season meteorological data. Runoff and Evapotranspiration are represented in mm and Soil Moisture is represented in m³/m³. All the products are averaged at 9 min (~16.5 km) spatial resolution at 24 hr time-step Interactive Viewer and Trend Analysis Interactive viewer allows the user to zoom in and zoom out with options to select the product type, or d size, period and the date. A click on any origin the interactive viewer shows the temporal trend for any one or all the products available, with option to choose the time period. Product : Surface Runoff Grid Size : Q'XQ' Period . Source -- http://bhuvan.nrsc.gov.in/nices/

Hydrological Science

- Experimental model computed Runoff, Soil Moisture and Evapotranspiration (Version 1.0) are derived through water balance computations using VIC-3L hydrological model considering geo-spatial data and current season meteorological data using IMD Temperature point data with satellite based derived rainfall data of CPC & TRMM. All the products are averaged at 9 min (~16.5 km) spatial resolution at 24 hr. time-step.
- Daily Hydrological fluxes are generated and uploaded to NRSC/Bhuvan in near real time with a lag of 2days.

Flood Forecast Model for the Godavari Basin & Real-time Simulations

Static Data

- Landuse/landcover, Soil texture, DEM
- **Derived Parameters:**

Topographic and Hydraulic Parameters of sub-basins and Channels

Dynamic Data

- Real-time 3 hr. Rainfall and discharge data (during 2010&11 from CWC)
- Daily Rainfall Data in near real-time from IMD of 2012.
- Rainfall forecast grids at 3 hr frequency from IMD, New Delhi -Monthly ET data, and Rating curves

Real-time validation at CWC, Hyderabad

- The model was calibrated, validated and operationally used in 2010 and 2012 using real-time hydro- met. data obtained from CWC and IMD.
- Inundation simulations were done using ALTM DEM of Sabari Floodplains.

Flood Forecast Hydrograph at Perur

Inundation simulation in Sabari River using ALTM DEM (on Bhuvan)

Modelling Environment:

HEC-HMS, HEC-Geo HMS, HEC-RAS, HEC- Geao RAS

Development of similar models to other frequent flood prone rivers of the country.

Mahanadi (completed Brahmani-Baitarani, Kosi, (in progress) Gghagra (in progress) Gandak, (in progress)and Krishna River Basins

Flood Early Warning Flood Inundation Modelling

nrs

C

GLOF Study of South Lhonak Glacier lake in Sikkim Himalaya

Simulated flood hydrographs for different depths of water in the lake

Possible flood inundation simulation in case of Sudden failure of the earthen dam (at 10000 m ³/s)

- Depth of inundation varies from 3 to 5 m when the discharge is 10,000 m $^{3}/s$

- Peak discharge will occur within one hour in case of sudden failure of the earthen dam.

Flood Management

- Near Real time flood inundation mapping
- Flood hazard zonation : Assam (c),Bihar (c) & Orissa (p)
 - Web application is developed
- River configuration and bank erosion studies
 - Selected rivers stretches
- Flood control embankment mapping
 - Selected river stretches
- Flood Forecast Modeling
- Flood inundation simulation
- Geospatial services for flood relief management
 - Mobile based application for disaster relief management

Jhelum (Srinagar) Floods-03-05 Sep.2014

Comparison of IMD, CPC, and TRMM Rainfall

			Sep-03			Sep-04			Sep-05		Sun	n(3 TO 5 S	EP)			
NAME	AREA(Sq.km)	CPC	TRMM	IMD	CPC	TRMM	IMD	CPC	TRMM	IMD	CPC	TRMM	IMD	CPC	TRMM	IMD
W220	522.6687	17.488	12.54	60.582	26.154	18.69	80.251	21.063	4.78	31.316	64.705	36.01	172.149	33819.3	18821.3	89976.9
W230	505.683	22.511	10.113	57.093	29.727	28.193	77.918	22.671	4.238	33.924	74.909	42.544	168.935	37880.2	21513.8	85427.6
W240	792.9009	33.834	15.936	62.125	26.725	45.731	81.913	26.553	5.314	30.452	87.112	66.981	174.49	69071.2	53109.3	138353
W250	647.757	30.465	22.652	59.477	17.196	27.651	77.747	16.534	8.146	31.782	64.195	58.449	169.006	41582.8	37860.7	109475
W260	1571.5782	21.305	32.114	51.261	62.757	98.861	69.413	100.572	11.966	38.739	184.634	142.941	159.413	290167	224643	250530
W270	503.091	37.148	22.268	57.406	25.065	33.299	71.804	25.459	8.197	31.376	87.672	63.764	160.586	44107	32079.1	80789.4
W280	446.0994	38.386	21.808	61.076	45.317	38.128	77.136	43.306	6.922	29.132	127.009	66.858	167.344	56658.6	29825.3	74652.1
W290	0.0648	33.834	15.936	62.125	26.725	45.731	81.913	26.553	5.314	30.452	87.112	66.981	174.49	5.64486	4.34037	11.307
W300	0.0486	36.121	15.601	54.569	56.195	56.51	76.716	39.554	8.495	36.876	131.87	80.606	168.161	6.40888	3.91745	8.17262
W310	2011.0437	36.121	15.601	54.569	56.195	56.51	76.716	39.554	8.495	36.876	131.87	80.606	168.161	265196	162102	338179
W320	30.0186	30.355	21.93	55.794	52.584	39.78	66.261	55.685	4.95	29.158	138.624	66.66	151.213	4161.3	2001.04	4539.2
W330	899.2377	47.213	27.156	57.838	97.185	51.65	78.63	68.805	10.719	36.242	213.203	89.525	172.71	191720	80504.3	155307
W340	49.5234	29.875	21.93	54.94	66.768	39.78	64.135	67.028	4.95	27.523	163.671	66.66	146.598	8105.54	3301.23	7260.03
W350	543.4209	49.15	32.076	55.438	111.728	56.181	77.188	90.181	15.637	39.086	251.059	103.894	171.712	136431	56458.2	93311.9
W360	1528.3728	30.096	26.921	56.979	77.883	58.816	78.371	106.598	14.135	42.836	214.577	99.872	178.186	327954	152642	272335
W370	1101.1545	15.816	35.954	46.362	72.359	110.189	86.063	155.236	30.474	52.126	243.411	176.617	184.551	268033	194483	203219
W380	321.3351	21.503	31.602	55.317	64.745	75.915	100.001	154.646	26.601	61.629	240.894	134.118	216.947	77407.7	43096.8	69712.7
W390	514.2123	51.282	34.84	63.321	119.011	63.306	120.092	137.15	22.984	73.525	307.443	121.13	256.938	158091	62286.5	132121
W400	1231.2	57.985	31.284	64.829	180.359	68.556	134.882	147.222	38.707	79.621	385.566	138.547	279.332	474709	170579	343914
W410	103.1535	28.172	31.44	42.34	75.554	67.65	104.715	150.539	28.74	64.439	254.265	127.83	211.494	26228.3	13186.1	21816.3
W420	965.4228	44.204	33.033	29.19	128.181	61.612	119.651	119.328	51.62	75.275	291.713	146.265	224.116	281626	141208	216367
	14287.9869													2792961	1499708	2687305
												WT.AV	'ERAGE	195.476	104.963	188.081

Floods in Jammu & Kashmir -2014

Multi-temporal RISAT-1 images showing flood recession at Bijbehara near Anantnag, J&K

Flood progression and recession during 08-09, Sep 2014 in part of Jammu & Kashmir

Cyclone HUDHUD - Response

- 1. Rapid Inundation Mapping
- 2. Flood Forecasting for Nagavali & Vamsadhara Rivers
- 3. Aerial Flying for damage assessment
- 4. Crowd Sourcing through Bhuvan

RISAT-1 image of 12-Oct-2014 (1800 hrs IST)

Cyclone HUDHUD- 2014

Very Severe Cyclonic Storm "HUDHUD" on 12 Oct 2014 hit Vishakhapatnam, Andhra Pradesh between 1200 and 1300 hours IST.

Vishakhapatnam, Srikakulam, Vizainagram and East Godavari were severely affected due to strong gale winds and inundation.

ISRO/NRSC has carried out a close watch on the situation.

Aerial survey was carried out for detailed investigation.

Crowd sourcing was enabled to collect information from ground.

International Charter was also activated.

Inundation maps (about 22 in number) were provided in near real time to state Govt.

Structural Damages (Shattered Roof Tops) Observed from Aerial & Satellite

EAST GODAVAR

Crowd sourcing data uploaded to Bhuvan

25665 Points Collected

(12 damage categories)

Crop Damage

House Damage Submerged Road Tree Uprooting....

Flood Mitigation Satellite based Flood Extent (SaFE)

Based on the analysis of satellite data acquired during selected major flood events in the country, generation of flood extent is initiated. This could be one of the important input for flood prone area assessment.

Selected events during 1988-2013 are considered for analysis.

Totalsatellitebasedmaximumfloodinundatedarea is about 10.934 mHa.

Hilly areas are not considered in this work. Work is in progress.

nrs

C

Data Used:

13 Years (1998-2010)- 128 satellite datasets.

Approach:

Based on Annual Frequency of Inundation and Intra Annual Flood Variations

SINO	Hazard Severity	Flood Hazard Area (ha)	% Flood Hazard (wrt State Geographic Area)	% Crop Area Under Different Flood Hazard Categories (wrt State Geographic Area)
1	Very High	83,280	0.88	0.43
2	High	1,22,905	1.31	0.78
3	Moderate	2,70,579	2.87	1.77
4	Low	5,24,862	5.57	3.60
5	Very Low	14,55,278	15.45	10.26
	TOTAL	24,56,904	26.09	16.83

Inventory and monitoring of glacial lakes & water bodies in Himalayan region of Indian river basins

- Inventory of glacial lakes/water bodies in the Himalayan region of Indian River basins using satellite data (spatial extent > 10ha)
- Monitoring the spatial extent changes of the lakes/water bodies (> 50ha) on monthly basis during June to October months for 5 years, succeeding the inventorying year

Inventory of glacial lakes/water bodies - 2009 Using Resourcesat -1 AWiFS Data

1000

500

2011						
	No. of	Water Spread Area				
Month	GL/WB monitored	Increase	Decrease	No Change		
Jun	178	49	20	109		
Jul	125	36	17	72		
Aug	153	73	23	57		
Sep	243	93	56	94		
Oct	360	114	97	149		
Jun-Oct	391	218	35	138		
2012				1.1. 1000 100		

	No. of	W	ater Spread	Area
Month	GL/WB monitored	Increase	Decrease	No Change
Jun	267	40	126	101
Jul	217	48	73	96
Aug	240	16	128	96
Sep	305	5	200	100
Oct	370	15	228	123
Jun-Oct	391	88	110	190
2013				
	No. of	Wa	ater Spread <i>I</i>	Area
Month	GL/WB monitored	Increase	Decrease	No Change
Jun	382	108	144	130
Lul .				

Ganga

Indus

Basin wise distribution
Glacial Lakes Water Bodies

1099

Brahmaputra

1500

1000

500

٥

Country wise distribution

Glacial Lakes Water Bodies

448

57 45

59

Bhutan China India Myanmar Nepal

904

310

Monitoring of Glacial Lakes/Water Bodies

- Glacial lakes / water bodies that are more than 50 ha were monitored using cloud free satellite of June to October during the years 2011, 2012 and 2013.
- Regular monitoring of two lakes (Lhonak lake in Sikkim and Pareechu lake) with high resolution satellite data is also being carried out during 2013.

Date of Pass

Water Spread

South Lhonak Lake

CARTOSAT-2 PAN : 12-May-2013	CARTOSAT-1 PAN : 12-Iul-2613	HSAT-1 \$AR: 25-Aug-2013	CARTOSAT-2PAN : 28-56p-2013	CARTOSAT-2 PAIN: 21-Oct-2013		(approx.)
Lhonak lake		M BARE		All and a set	12 th May 2013	115
	a second		A starting		12 th Jul 2013	125
1.5.1.19					25 th Aug 2013	121
Lhonak Glacier				199124	28 th Sep 2013	120
	CONTRACT ON ALL 17 Alors 2013	CARTYLEAT 3 DAYL 60 Day 2013	CALIFORNI 2 MAIL 27 Day 2012		21 st Oct 2013	123
NEDUCICESAL-1 DISTORIX: 04-H04-2013			CARIOSAI-2-401:27-048-2013	CARLESAL-2 PART 01-131-2014	04 th Nov 2013	125
			and the second state		17 th Nov 2013	128
				5	09 th Dec 2013	129
CT CHI	CATE ATOM		3	20	27 th Dec 2013	123
ge III	Stand WHOL	A. A. S. 1. 1	S De la M		01 st Jan 2014	122

Automated Satellite Data Processing

Geophysical Products : Water Bodies Fraction, Snow Cover Area

Satellite / Sensor	Frequency	Outputs
Resourcesat-2 AWiFS	15 Days	56m Water bodies Layer 3'x3' Grid Water bodies fraction
RISAT-1 MRS	Month	18m Water bodies Layer 3'x3' Grid Water bodies fraction
Resourcesat-2 AWiFS	15 Days	Snow cover fraction at 3'x3' Grid

Microwave Data

RESERVOIR SEDIMENTATION ASSESSMENT USING REMOTE SENSING TECHNIQUE SRI RAM SAGAR RESERVOIR, ANDHRA PRADESH

Satellite Image (FCC) of SRSP Reservoir

Elevation-Capacity curve of SRSP Reservoir

Waterspread area depletion pattern during 2001-02

•Gross capacity assessed to be 2070.164 M.Cu.m. in year 2002

•34.74 % capacity (1101.773 MCM) is lost since impoundment in 1970.

National Action Plan for Sedimentation Assessment of 124 Reservoirs

Estimation of Near Real Time Live storage Capacity of Reservoirs Utilisation of RISAT-1 + Resourcesat-2

Algorithms Developed and Evaluated for Waterspread Extraction ; As soon as the data is acquired , processing will be enabled through customized module

WSA-Capacity Curves : Look up Table

Importance of tank irrigation

4.78 M.ha in 1962-63 3.07 M.ha 1985-86 1.97 M.ha 2008-09

Andhra Pradesh

Tamil Nadu

Nakta Tank Command, Kabirdham District, Chattisgarh State

IP: 126 ha Designed Irrigation: 81 ha

IRS P6 LISS III data

	Kharif				
Year	Paddy	Non Paddy	Total		
2004-05	57.86	11.94	69.80		
2007-08	66.61	8.16	74.77		

Kharif 2007

	Rabi				
Year	Paddy	Non Paddy	Total		
2004-05	0.00	38.94	38.94		
2007-08	0.00	42.97	42.97		

Tank command jurisdiction Idetnfied through field maps and LISS IV data)

IRS P6 LISS III data

Tank / Minor Irrigation Water Management

4.78 M.ha in 1962-63 3.07 M.ha 1985-86 1.97 M.ha 2008-09

Kupuwara Mandi Mandi Per Kabirdhan Ganjam Gulbarga Gajapathi Bangalore(R) Anantpur

The satellite data based evaluation covered ⁹ 742 Minor Irrigation schemes in 9 Districts spread over 6 States

- Total CCA covered 1,01,788 hectare
- Two years of study
 - 2004-05 (Pre) and 2007-08 (Post)

Multi-year satellite data helps in evaluating impact of developmental programs - through generation of agriculture and water related performance indicators

The satellite data based evaluation considers the temporal change (from 2004-05 to 2007-08) in Water spread area, Season-wise cropped area, Principal crop condition & Annual irrigation utilization

Irrigation Water Management

Inventory of Irrigated Agriculture

• Cropping Pattern, Crop Condition

Performance Evaluation

- Irrigation Intensity ,Crop Productivity
- Water Utilisation Index, Water Use Efficiency

Monitoring Intervention Schemes

Impact evaluation ,Sustenance of improvement

Near Real-Time Monitoring

- Irrigation Progress
- Intra-seasonal Irrigation Water Demand

Impact Assessment

Surface Water Logging, Soil Salinity/Alkalinity

Performance Evaluation

Spectral Emergence / Active Tillering / Heading

Inventory of Irrigation Infrastructure

Assessment of Irrigation Potential

Assessment of Irrigation Potential created is estimated by comparing the canal network in terms of nos., lengths, its status together with information and status on irrigation and drainage structures with the planned / executed works

Assessment of Irrigation Potential Created in AIBP funded irrigation Projects in India

Upperwardha Project, Maharashtra State

Satellite based Online Monitoring of AIBP projects using

Neemkheda Dam - Submergence area analysis

Location : 77 ° 41' 00" ; Latitude : 23 ° 16' 45"

India-Water Resources Information System (India-WRIS)

"Generation of Database & Implementation of Web enabled Water Resources Information System in the Country (India-WRIS)" A joint venture of NRSC/ISRO and CWC

A 'Single Window solution' for comprehensive, authoritative and consistent data & information of India's water resources in a standardized national GIS framework for planning, development and management of water resources in the country.

Than Q

vvrao@nrsc.gov.in

Major Information System and Sub-Info System

Main Information System – 12, Sub information System – 35, Layers – 95, and Attributes - > 4500, 5-100 years data

SI. No.	Ma	Main & Sub Information System			
.	BASE DA	TA INFO SYSTEM			
	1.	Administrative Info System			
	2.	Infrastructure Info System			
	3.	Terrain (DEM) Info System			
	4.	Region Info System			
П.	SURFACE	WATER INFO SYSTEM			
	5.	Water Resource Region Info System			
	6.	Basin Info System			
	7.	Watershed Info System			
	8.	River Info System			
	9.	Surface Water Body Info System			
	10.	Water Resources Projects Info System			
	11.	Command Area Info System			
	12.	Minor Irrigation Info System			
	13.	Canal Info System			
Ш.	GROUND	WATER INFO SYSTEM			
	14.	Aquifer / Litholog Info System			
	15.	Ground Water Level Info System			
	16.	Ground Water Potential Info System			
IV.	HYDRO -	- MET INFO SYSTEM			
	17.	Meteorological Info System			
	18.	Climate Info System			
	19.	Hydro-Observation Info System			
	20.	Flood-forecasting Info System			
V .	WATER C	UALITY INFO SYSTEM			
	21.	Surface Water Quality Info System			
	22.	Ground Water Quality Info System			

SI. No.	Main & Sub Information System
VI.	SNOW COVER / GLACIER INFO SYSTEM
	23. Snow Cover/Glacier Info System
VII.	INLAND NAVIGATION WATERWAYS INFO SYSTEM
	24. Inland Navigation Waterways Info System
VIII.	INTER-BASIN TRANSFER LINKS INFO SYSTEM
	25. Inter-basin Transfer Links Info System
IX.	HYDROLOGICAL EXTREMES INFO SYSTEM
	26. Flood Info System 27. Drought Info System 28. Extreme Events Info System
Х.	LAND RESOURCES INFO SYSTEM
	29. Land Use / Land Cover Info System 30. Land Degradation Info System 31. Wasteland Info System 32. Soil Info System
XI.	WATER TOURISM INFO SYSTEM
	33. Water Tourism Info System
XII.	SOCIO – ECONOMIC INFO SYSTEM
	34. Rural Info System35. Urban Info System

Water Resources Assets of the Country

Spatial Layer Details	l	Number/ Area	No. of Attributes	
WATER RESOURCES PROJECTS				
No. of Major & Medium Irrigation Projects		1747	55	
No. of Lift irrigation Schemes		352	15	
No. of ERM Projects		131	50	
No. of Hydro Electric projects		222	17	
No. of Powerhouses		293	39	
No. of Dams		4575	34	
No. of Barrages/Weir/Anicuts		540	51	
No. of Reservoirs		4517	38	
Total Length of Canal		324600 km	n 3	
No. of Hydro-Structures		114709	6	
Waterlogged Areas in Major & Medium Command		17192.79 Sq.km	5	
Salt Affected Areas in Major & Medium Command		10345.41 Sq.km	5	
No. of Surface Water bodies		798909	5	
Area under Surface Water bodies		48379.89 Sq.km	-	
No. of Inter Basin Transfer Links		30	8	
 No. of Inland Navigation Waterways 		6 (4487 km))	

ENVIRONMENTAL DATA				
No. of Hydrological Observation Stations (CWC)	953	68		
No. of Surface Water Quality Stations (CWC)	419	2		
No. of Flood Forecasting Stations (CWC)	175	20		
No. of Meteorological Stations (CWC)	851	23		
WATERSHED ATLAS				
No. of Water Resource Regions	6			
No. of Basins	27			
No. of Sub-basins	101			
No. of Watersheds	4707			
Total Length of River (Line)	3617662 km			
 Total Length of River (Polygon) 	627726 km			

ADMINISTRATIVE LAYERS

Total Length of Roads	2702136.38 km
Total Length of Railway line	69023.46 km
No. of Water Tourism locations	1328

India - WRIS webgis

A 'Single Window solution' for comprehensive, authoritative and consistent data & information of India's water resources in a standardized national GIS framework for IWRM in the country.

- Accurate, adequate and contemporary information on the state of water resources is must in public domain for involvement in IWRM.
- Increasing public awareness elevates the importance of water information & enlightened public involvement in water management / decisions

Project duration & cost : 5 years & Rs. 783.2 Million Website & WebGIS Portal Launch in Public domain India-WRIS WebGIS Version 1.0 launch - 7th December, 2010 & Version 4.0 launch - 19th January, 2014

WR S

Total Visits: 653,840 Visitors from India: 5,82,326 Visitors from other countries : 71,514 Total Downloads: 20,192 153 countries

http://www.india-wris.nrsc.gov.in/

Related Thematic Database

Foundation Geo-database Administrative

Toundation Geo-database Water resources **Features of the Portal:**

- Web portal for all sections of society
- Map policy, data policy, and CWC guidelines
- Scalable database
- Mobile Version

System has three categories of users and datasets:

- All General users
- Premium users
- CWC Intranet users

Data collection, standardization & organization

- > More than 332,000 Softcopy files in different formats
- > More than 5160 Hard copy reports